Design Concepts for Cooled Ceramic Matrix Composite Turbine Vanes, Phase II



Completed Technology Project (2011 - 2013)

Project Introduction

The work proposed herein is to demonstrate that the higher temperature capabilities of Ceramic Matrix Composites (CMC) can be fully utilized to reduce emissions and improve fuel consumption in gas turbine engines. The work involves closely coupling aerothermal and structural analyses for the first stage vane of a high pressure turbine (HPT). These vanes are actively cooled, typically using film cooling. Ceramic materials have different structural and thermal properties than conventional metals used for the first stage HPT vane. Vane configurations which satisfy CMC structural strength and life constraints, while maintaining vane aerodynamic efficiency and increasing mainstream gas temperature for improved engine performance will be identified. The proposed work will examine modifications to vane internal and external configurations to achieve the desired objectives. Thermal and pressure stresses are equally important, and both will be analyzed. Three dimensional fluid and heat transfer analyses will be used to determine vane aerodynamic performance and heat load distributions.

Primary U.S. Work Locations and Key Partners

Design Concepts for Cooled Ceramic Matrix Composite Turbine Vanes, Phase II

Table of Contents

Project Introduction		
Primary U.S. Work Locations		
and Key Partners	1	
Project Transitions	2	
Organizational Responsibility	2	
Project Management		
Technology Maturity (TRL)		
Technology Areas		
Target Destinations	3	

Small Business Innovation Research/Small Business Tech Transfer

Design Concepts for Cooled Ceramic Matrix Composite Turbine Vanes, Phase II

Completed Technology Project (2011 - 2013)

Organizations Performing Work	Role	Туре	Location
N&R Engineering	Lead Organization	Industry Small Disadvantaged Business (SDB)	Parma Heights, Ohio
Glenn Research Center(GRC)	Supporting Organization	NASA Center	Cleveland, Ohio

Primary U.S. Work Locations

Ohio

Project Transitions

June 2011: Project Start

May 2013: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/138920)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

N&R Engineering

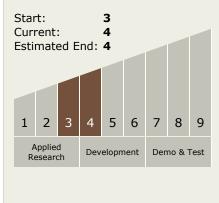
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Robert J Boyle

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Design Concepts for Cooled Ceramic Matrix Composite Turbine Vanes, Phase II

Completed Technology Project (2011 - 2013)

Technology Areas

Primary:

- TX01 Propulsion Systems
 TX01.3 Aero Propulsion
 TX01.3.1 Integrated
 Systems and Ancillary
 Technologies
- **Target Destinations**

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

